Mifriend

Genetically Modified Microbes (GMM) are a biotechnological alternative to different environmental problems such as remediation of polluted sites, where microbes with recombinant catabolic pathways are envisaged as the solution for removal of toxic organic compounds. Moreover, the exploration and exploitation of synergistic interactions between plants and microbes for phytoremediation is also a target to solve contamination problems. Critical to the safe application of recombinant microbes in the environment, and re-assurance of public concerns, is adequate information on safety-related properties of the microbes in question. Current whole genome sequencing efforts on relevant microbes provide a unique opportunity to extract completely new safety-related information, to conduct experiments to generate important new data, and to create new tools for increasing the degree of predictability of the behaviour of strains designed for applications in the open environment or in industrial bioreactors.
One of the microorganisms with current applications in Biotechnology is Pseudomonas putida, a paradigm of metabolically versatile microorganism which recycles organic wastes in aerobic compartments of the environment, and thereby plays a key role in the maintenance of environmental quality. The strain KT2440 is the most extensively characterised and best understood strain of P. putida. KT2440 is a nonpathogenic bacterium certified in 1981 by the Recombinant DNA Advisory Committee (RAC) of the United States National Institutes of Health as the host strain of the first Host-Vector Biosafety (HV1) system for gene cloning in Gram negative soil bacteria. Since then, KT2440 has been used world-wide as host of choice for environmental applications involving expression of cloned genes. This strain is one of the few nonpathogenic microbes which are subject to whole genome sequencing by a P. putida genome project currently in progress in Germany. The sequence data generated in the genome project is being made public at appropriate intervals (a 10-fold genome equivalent of raw sequence data is already available) and will constitute an invaluable resource for this project. Therefore, this microorganism, its recombinant derivatives and the body of knowledge accumulated in the last 20 years on its genetics, physiology and biochemistry make it an ideal and friendly microbe for safe biotechnological applications in the environment.
The major aim of this project is to settle the basis to reduce in a rational, environmentally friendly, and safe manner our contamination problems by developing P. putida strains useful to design environmental treatment systems in harmony with the biosphere.

Posted in

Recent Comments

    Archives

    Categories

    • No categories