↓ Skip to Main Content
BioInfoBank Institute
  • Instagram
  • LinkedIn
  • Twitter
  • Facebook
  • Papers
  • Projects
  • Partners
  • Career
  • Contact

Search results for: 단양바이럴마케팅방법[텔레그램 ADSALMAT] 산후조리원바이럴마케팅비용 단양바이럴마케팅비용☁산후조리원바이럴마케팅비용⑩산후조리원 AdY

Projects

ELM

The four principal objectives of the ELM consortium are to (1) design, (2) develop, (3) maintain and (4) apply, a novel infrastructure resource devoted to the prediction of functional motifs in protein sequences. ELM (short for Eukaryotic Linear Motif) will be both “virtual” – provided electronically – and “distributed” – provided by a network of sites. Effective prediction of short motifs will require the implementation of hitherto unique context-dependent filtering software. The ELM resource will be made available to researchers as WWW servers and as a package for local installation.
The four principle objectives correspond approximately to overlapping phases of the ELM project:
Design: The initial design requirements are to integrate: (I) a relational database; (II) data input requirements; (III) new application software; (IV) private consortium web servers; and (V) public web servers. The partners will collectively contribute both the inferred biological needs and the underlying technical specifications. A document will be prepared that describes the internal ELM architecture. Subsequent revisions to the document will be ratified by all ELM partners. A web-based input form will ensure that data input meets the internal specification.
Develop: An extensive development phase is needed to create the software needed to effectively query ELM and to generate useful predictions. Various context filters will be developed as separate modules. The easiest filter modules will be completed first, and the more complex filters later in the project. As the modules are completed, they will be integrated into the ELM resource as serial filters. For optimal performance, the fastest executing filters will be accessed first, so that only the surviving motif candidates are passed on to the slower filters.
Maintain: The ELM servers will be continually maintained and extended as the project matures. Data will be continually added into the ELM resource and older data will be revised as new biological findings are published in the literature. While many motifs are already known, during the project there will be a steady stream of new motif publications. In the mature phase of ELM, releases will be scheduled at 6 month intervals.
Apply: As the ELM resource matures, it will become increasingly powerful and useful to experimentalists. Predicted motifs will suggest unexpected functional interactions or help to confirm suspected but poorly characterised ones. The consortium partners, and their close collaborators in the host institutes, will investigate predicted motifs relevant to their research interests. Verification (and to an extent exclusion) of predicted linear motifs will lead to enhanced understanding of multifunctional multidomain proteins, many of which assemble (via linear motifs) into huge complexes whose aggregate functions are hard to investigate with current experimental approaches.
The new partner will develop an additional ab-initio filter to estimate the conformational preferences of parts of proteins. The main objective of the task proposed by the new partner is to provide a reliable tool for detection of protease target sites. This new objective represents an expansion of the ongoing work complementary to the objectives outlined in WP2 and W3.

Projects

KYROBIO

The objective of the KYROBIO project will be to broaden the toolbox of single enantiomer chiral chemicals that are produced by industry in Europe using biocatalytic routes. The main target is applications of lyase enzymes to selectively synthesize molecules with multiple chiral centres applying enzymatic carbon-carbon and carbon-nitrogen bond formation as the key technical platforms being developed. Chiral compounds are an important class of chemicals that biocatalytic transformation has already demonstrated great potential to compete with chemocatalysts in their production with associated benefits that come from reductions in use of organic solvents, toxic metals and energy but application has been relatively limited. KYROBIO will address the main challenges with moving forward to the next generation of added value industrial applications of white biotechnology for high value chemical synthesis. Using a supradisciplinary approach ranging from enzyme development, chemistry, molecular biology, fermentation and innovative isolation techniques the bottlenecks to applying this new technology will be overcome. It is expected that promising candidate chemicals will be commercialised within three years of completion and so scale up with economic and feasibility studies that are also key technology developments. The consortium includes a strong presence of SMEs including SME leadership and also a large multinational company which ensures multiple routes to market for the outcomes of this project. We also plan to have economic and life cycle analysis coupled with significant dissemination plans to ensure wider understanding of this technology that will lead to increased acceptance and uptake.

Projects

Mifriend

Genetically Modified Microbes (GMM) are a biotechnological alternative to different environmental problems such as remediation of polluted sites, where microbes with recombinant catabolic pathways are envisaged as the solution for removal of toxic organic compounds. Moreover, the exploration and exploitation of synergistic interactions between plants and microbes for phytoremediation is also a target to solve contamination problems. Critical to the safe application of recombinant microbes in the environment, and re-assurance of public concerns, is adequate information on safety-related properties of the microbes in question. Current whole genome sequencing efforts on relevant microbes provide a unique opportunity to extract completely new safety-related information, to conduct experiments to generate important new data, and to create new tools for increasing the degree of predictability of the behaviour of strains designed for applications in the open environment or in industrial bioreactors.
One of the microorganisms with current applications in Biotechnology is Pseudomonas putida, a paradigm of metabolically versatile microorganism which recycles organic wastes in aerobic compartments of the environment, and thereby plays a key role in the maintenance of environmental quality. The strain KT2440 is the most extensively characterised and best understood strain of P. putida. KT2440 is a nonpathogenic bacterium certified in 1981 by the Recombinant DNA Advisory Committee (RAC) of the United States National Institutes of Health as the host strain of the first Host-Vector Biosafety (HV1) system for gene cloning in Gram negative soil bacteria. Since then, KT2440 has been used world-wide as host of choice for environmental applications involving expression of cloned genes. This strain is one of the few nonpathogenic microbes which are subject to whole genome sequencing by a P. putida genome project currently in progress in Germany. The sequence data generated in the genome project is being made public at appropriate intervals (a 10-fold genome equivalent of raw sequence data is already available) and will constitute an invaluable resource for this project. Therefore, this microorganism, its recombinant derivatives and the body of knowledge accumulated in the last 20 years on its genetics, physiology and biochemistry make it an ideal and friendly microbe for safe biotechnological applications in the environment.
The major aim of this project is to settle the basis to reduce in a rational, environmentally friendly, and safe manner our contamination problems by developing P. putida strains useful to design environmental treatment systems in harmony with the biosphere.

  • Papers
  • Projects
  • Partners
  • Career
  • Contact
Instytut BioInfoBank sp. z o. o.
NIP: 779-20-69-323
REGON: 639594588
KRS: 0000099000
tel: (+48 61) 865 35 20
fax: (+48 61) 864 33 50
career: hr@bioinfo.pl
e-mail: info@bioinfo.pl
Biuletyn Informacji Publicznej
BIB Seed Capital